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Breather compactons in nonlinear Klein-Gordon systems
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We demonstrate the existence of a localized breathing mode with a compact support, i.e., a stationary
breather compacton, in a nonlinear Klein-Gordon system. This breather compacton results from a delicate
balance between the harmonicity of the substrate potential and the total nonlinearity induced by the substrate
potential and the coupling forces between adjacent lattice $84€63-651X%99)00811-9

PACS numbd(s): 41.20.Jb

The soliton concept appeared for the first time in the constrate potential, we show that a BC results from a balance
text of nonlinear lattices, before becoming a reality in manybetween the harmonicity of the substrate potential and the
branches of sciendd]. In particular, the long-range interac- total nonlinearity induced by the substrate potential and the
tion of solitons is a crucial problem which has been inten-coupling forces between adjacent lattice sites. In other

sively investigated for both its fundamental and applied in-words, we show that the compactification of a nonlinear
terests. For example, in nonlinear fiber optics, this longKlein-Gordon breather requires the presence of harmonicity
range interaction imposes a strict limitation on thein the substrate potential. Our study reveals the parameter

performance of |0ng_hau| fiber transmissid]ﬁ' The con- r.egions in which a BC can execute a stable OSCi||at0ry mo-
cept of compactification or strict localization of solitary ton. ) o ) )
waves appeared recently in the literature. Rosenau and Hy- The system under consideration is a nonlinear Klein-
man [3], who investigated a special type of Korteweg—deGordon system with nonlinear coupling between lattice sites,
Vries equation, discovered that solitary waves may compacdoverned by the following Hamiltonian:

tify in the presence of a nonlinear dispersion. Such solitary

waves, which are characterized by a compact support, i.e., 1421 4,1 2

the absence of infinite wings, have been calledhpactons H =§n: 2Qnt 2Cn(Qn—Qn-1)"+5w5V(Qn), (D

In other words, two adjacent compactons do not interact un-

E;ivéheiyhcaig';;ﬂ?re?mad in a way similar to the Contac%NhereQn is the position of thenth particle measured from

Dusuel et al. [4] demonstrated the existence of a statictrt]reeﬂtr:hlit;'fhee Snlz)er;licn ”('ea'l‘:‘ égﬁt I?naramgtggtt?negicce?tzgc;lhsettri]rie
compacton in a real physical system, made up of identical " c"Y piing,

pendulums connected by springs. Moreover, traveling com(-jeri.va'[_ive’“’0 s the Iimitinngrequczncy for Iong-wavglength
pactonlike kinks may exist in nonlinear Kein-Gordon lattices €XCitations, and/(Qn) = aQ/2+Q,/4 is the soft on-site po-

with d-four potential, in conditions that require the presencel®ntial- The parametew, which serves as a measure of the

of nonlinear dispersion and the absence of linear dispersioffiPortance of harmonicity in the substrate potential, plays a
[5]. Thus, an understanding of the physical mechanismgruc'al rol'e fqr stabilizing a BC, as we show later on. It is
which give rise to compactons is essential for predicting théVrth noting in Eq.(1) the absence of linear coupling be-
conditions in which real physical systems can support suciween adjacent Iattlcg sites. The reason is that the I|_near cou-
compact structures. The possibility of the existence of!iNg forces would give rise to a phonon band which may
breather compactons was predicted in recent stydied. enter in direct resonance vylth the internal modes of a com-
Kivshar [6] reported that breathers with a compact supporPacton, thus causing radiation of energy away from the com-
may exist in a lattice of identical particles interacting via Pacton. The lattice equations of motion are

purely anharmonic coupling forces, without any on-site sub-

strate potential. These results raise a fundamental question: 7*Qn -~ 3 3

can a compactonlike breather survive the effects of an on-site W__C“'[(Q““_Q“) +(Qn-17Qn)"]
substrate potential? The answer to this question is given in - 3

the present work. —205(aQy+Qp). 2

In this Brief Report, we demonstrate the existence of a
breather with a compact support, i.e., a breather compactoRor w3<C,, one approaches the continuum limit, in which
(BC), in a nonlinear Klein-Gordon lattice with a soft on-site Q,, varies slowly from one site to another. Thus, using the
substrate potential. We obtain the exact analytical compactogontinuum limit approximation, Eq2) can be reduced to the
solution in the continuum lattice, which agrees surprisinglyfollowing partial differential equatiofi4]:
well with the exact numerical solution, not only in the con-
tinuum system but also in the discrete and highly discrete 2 2.0
. 2 °Q dQ\“9°Q
system. Using a deformable substrate potential with a param- ——3C,| =] —>+1wi(aQ+Q%=0 3
. .. . 2 nl IX (?XZ 2%0 ’
eter that measures the importance of harmonicity in the sub- at
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where the site inder is replaced by the continuous position

variablex. 12_ (a ): 13_ t=T/2 (e)]
To obtain the stationary breather solution, we look for C 1 ]
localized waves of the forn@(x,t)=6(t) ¢(x), which we ok 3 ok ]

substitute in Eq(3) to obtain the following equations:
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3C L dux— 3 wip>+K2=0, (4b)

whereK is an arbitrary constant. Solving Eqd), we obtain,

. . . . s_l_TIII|IIIIIIIII|IIII|III _1—'I_I(I|llll|II\I|IIII|III‘I—-
after a little algebra, the following continuum squtlohn for % o 2 40 60 o 100 g 20 a0 o s
breathers with compact suppd@dr compactonlike breather g N3 t=T/4 (c)_: L t=7T/8 (g)_:
§ C 1 ,: i :'_\ ]
Q(x,t)=Qy cod Bx)cn[ (a+ Q%) Y2wot/v2,k?] S of 1 ok .
2 T 1 L ]
for |X_X|$a:77/(23), (5) <'_:I'IIII|IIII||III|\IIl|IIII___]'—IllllllllllllI|IIII‘IIII__
2 1/2 orr||2|0|l|14|o||||6|0||||8|01|1}00 o!lllzlollII4|0III|6|0I5|18|OICI:}_OO
Q(x,t)=0 for [x—X|>a, k=Qu/[2(a+QF)]*3 E £=3T/8 (@i b t=T  (h)
where X locates the center of mass of the breather. The pa- . ; . ]
rameter B=[ w3/(6C,)]Y* may serve as a measure of the o { of .
importance of discreteness effects in the system. The solu C \—\ SZ :/ 1 F ]
tion given by Eq.(5) indicates that a BC possesses a cosine  -1fr, 1l b d ~then oo o
spatial profile. Its amplitude is proportional @,,, which O 20 40 60 80 100 O 20 60 80 100
S i . : SITE n Sie %
multiplies acn Jacobi elliptic function of time. Whereas a
standard breather soliton possesses exponefitifihite) FIG. 1. Plots showing the temporal evolution of the spatial pro-
wings, the full width of the BC is strictly limited to file of a compactonlike breather over one period of the dynamics:

T=0.181. The largest curves correspond ta-=57 [C,
:%(57/77)4]. The smallest curves correspond tq-=6 [C,
Le=mw/B=m[6C, /wg]lm, (6) =1728#r*]. The solid curves show the analytical soluti@in the
continuum approximation. The dotted curves represent the exact
solution of the discrete equations of moti(®).
thus implying that two BC’'s will not interact unless they
come into contact in a way similar to the contact betweercontinuum solutior(5) agrees surprisingly well with the ex-
two hard spheres. act discrete solutiofdotted curves Thus, the results in Fig.
To check the validity of the above compacton solution1 indicate that discreteness effects may not be detrimental to
(5), we have performed the numerical solution of the equathe abrupt localization of nonlinear Klein-Gordon breathers.
tions of motion(2), which treat intrinsically the lattice dis- This feature is remarkably well confirmed by the results rep-
cretenessi.e., in which no continuum limit approximation is resented in Fig. 2, which we obtained fog=2. This situa-
madeg. We choose the initial condition for the simulation to tion in which only a single particle makes up the breather
be Qn(t=0)=Qy cos(Bn) for the particles which make up motion corresponds to the ultimate degree of discretization
the breather motion. This breather profile corresponds to thef a breather mode. Consequently, it would be inappropriate
solution (5) evaluated at discrete lattice sites. The initial ve-defining a precise spatial profile for such a discrete breather.
Iocmes on the particles are chosen to be zero. Hereafter wlowever, Fig. 2 shows, contrary to common intuition, that
take w3= 8. Figure 1 shows the evolution of the lattice pro- the particle that makes up the breather motion is perfectly
file over one period of the breather motion. The largesidescribed by the continuum solutigb) evaluated ak=4,
curves correspond to a situation where the full width of thethe center of mass of the breath&tevertheless, from the
compacton isL-=57 times the lattice spacingr equiva- above results, we cannot conclude that here we have a
lently C,,= 3(57/7)*], which therefore corresponds to a situ- breather compacton, but rather a discrete breather with
ation close to the continuum system. As can be seen in Figbrupt localization
1, the analytical continuum solutiof®) represented by the Whereas thabrupt localizationor quasicompactification
largest solid curves agrees extremely well with the exact soef a nonlinear Klein-Gordon breather seems to be relatively
lution that we obtained numericallgotted curvg After one  insensitive to the importance of the effects of lattice discrete-
period of the dynamicsT(=0.18), the breather recovers the ness, the presence of harmonicity in the substrate potential is
exact shape it has initially at=0. a major requirement for the existence of a BC. Indeed we
On the other hand, the smallest curves in Fig. 1 show théave found out that the harmonicity parametetletermines
results that we obtained fdr.=6, which corresponds to a the maximum amplitude of the breather moti@,.y, below
quite discrete system. Unexpectedly, we find there that thevhich the breather is stable {0Q\<Q..0- The higher the
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zation (T=0.181). The simulation parameters ae=2 [C,,

= %(57/77)4]. The solid curves show the analytical continuum so-
lution (5). The crosses represent the exact solution of the discrete 0
equations of motior{2).
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FIG. 2. Representation of the temporal evolution of the breather & L -
over one period of the dynamics in the ultimate degree of discreti- 0.05 — _
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harmonicity parameter, the higher the maximum amplitude SITE n

Qmax- Figure 3a) shows the stability diagram of a BC inthe  FIG. 3. Plot showing the parameter region of stability of the
range = «<1000. Figures &) and 3c), which we obtained compacton foilLc=57, in the range & «<1000.(a) Stability dia-
for =300, show the breather profile after ten periods of itsgram. (b) Breather profile forQy,=1.5. (c) Breather profile for
oscillatory motion (= 10T~ 3.14), for unstable and a stable Qu=0.1. The dotted curves show the breather profile=s0. The
points of the stability diagram, respectively. Those twosolid curves show the breather profiletat 10T ~3.14.

g(()ljl?tzha(‘)z/\elslrlﬂ:ta?ﬁdthbg tg(?;r\;]vgtgrrorsesﬁsnlnofli?zfalgi?i?re thepacton[S], it comes out from this research that the presence
P 9 Y of harmonicity in the substrate potential is required to stabi-

spatial profile of the breather and its temporal periqdicity ar§ize 3 BC, a result which remains to be explained. This har-
= - =9 dmonicity gives rise to a phonon line, which corresponds to
blllty the breather motion pecome_s p'erfectly periodic a}nd thestanding waves that cannot propagate owing to their zero
cosine shape of its spatial profile is preserved during thgroup velocity. Finally, it emerges from this Brief Report as
motion. Furthermore, we have performed simulations notye|l as from previous related studip$—6] that the concept
represented here, which show that in general the domain qff compactification of solitary waves implies strict condi-
stability of a BC increases as the nonlinear coupling detions that must be satisfied in order for physical systems to
creases, that is, as the system is more and more discrete. support localized modes with compact support. We have

In conclusion, we have demonstrated the existence of lopointed out some of those conditions in the present work.
calized breather modes with compact support in a standardevertheless, in the actual stage of the research on structures
nonlinear Klein-Gordon system. Whereas the compactificawith compact support, the results that have been obtained are
tion of nonlinear Klein-Gordon kinks requires a strong non-still far away from practical applications. Much work re-
linear coupling[4,5], that is, a condition close to the con- mains to be done, and in particular some fundamental prob-
tinuum limit, we have shown that contrary to common lems remain to be carefully examined, such as the interaction
intuition the quasicompactification or abrupt localization of aof such structures. This effort deserves to be carried out to
nonlinear Klein-Gordon breather can be achieved in discretenake the compacton concept a reality in some areas in which
systems. Furthermore, whereas the harmonic coupling mugsbmpactons could ensure practical applications such as in
be absent to avoid any radiation of energy away from a comsignal processing and communications.
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