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Breather compactons in nonlinear Klein-Gordon systems
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Laboratoire de Physique, Universite´ de Bourgogne, 9 Avenue A. Savary, Boıˆte Postale 47 870, 21078 Dijon Ce´dex, France

~Received 6 July 1999!

We demonstrate the existence of a localized breathing mode with a compact support, i.e., a stationary
breather compacton, in a nonlinear Klein-Gordon system. This breather compacton results from a delicate
balance between the harmonicity of the substrate potential and the total nonlinearity induced by the substrate
potential and the coupling forces between adjacent lattice sites.@S1063-651X~99!00811-9#

PACS number~s!: 41.20.Jb
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The soliton concept appeared for the first time in the c
text of nonlinear lattices, before becoming a reality in ma
branches of science@1#. In particular, the long-range interac
tion of solitons is a crucial problem which has been inte
sively investigated for both its fundamental and applied
terests. For example, in nonlinear fiber optics, this lon
range interaction imposes a strict limitation on t
performance of long-haul fiber transmissions@2#. The con-
cept of compactification or strict localization of solita
waves appeared recently in the literature. Rosenau and
man @3#, who investigated a special type of Korteweg–
Vries equation, discovered that solitary waves may comp
tify in the presence of a nonlinear dispersion. Such solit
waves, which are characterized by a compact support,
the absence of infinite wings, have been calledcompactons.
In other words, two adjacent compactons do not interact
less they come into contact in a way similar to the cont
between hard spheres.

Dusuel et al. @4# demonstrated the existence of a sta
compacton in a real physical system, made up of ident
pendulums connected by springs. Moreover, traveling co
pactonlike kinks may exist in nonlinear Kein-Gordon lattic
with F-four potential, in conditions that require the presen
of nonlinear dispersion and the absence of linear disper
@5#. Thus, an understanding of the physical mechanis
which give rise to compactons is essential for predicting
conditions in which real physical systems can support s
compact structures. The possibility of the existence
breather compactons was predicted in recent studies@6,7#.
Kivshar @6# reported that breathers with a compact supp
may exist in a lattice of identical particles interacting v
purely anharmonic coupling forces, without any on-site s
strate potential. These results raise a fundamental ques
can a compactonlike breather survive the effects of an on
substrate potential? The answer to this question is give
the present work.

In this Brief Report, we demonstrate the existence o
breather with a compact support, i.e., a breather compa
~BC!, in a nonlinear Klein-Gordon lattice with a soft on-si
substrate potential. We obtain the exact analytical compa
solution in the continuum lattice, which agrees surprisin
well with the exact numerical solution, not only in the co
tinuum system but also in the discrete and highly discr
system. Using a deformable substrate potential with a par
eter that measures the importance of harmonicity in the s
PRE 601063-651X/99/60~5!/6218~4!/$15.00
-
y

-
-
-

y-

c-
y
e.,

n-
t

al
-

e
on
s
e
h
f

rt

-
n:

ite
in

a
on

on
y

e
-

b-

strate potential, we show that a BC results from a bala
between the harmonicity of the substrate potential and
total nonlinearity induced by the substrate potential and
coupling forces between adjacent lattice sites. In ot
words, we show that the compactification of a nonline
Klein-Gordon breather requires the presence of harmoni
in the substrate potential. Our study reveals the param
regions in which a BC can execute a stable oscillatory m
tion.

The system under consideration is a nonlinear Kle
Gordon system with nonlinear coupling between lattice sit
governed by the following Hamiltonian:

H5(
n

1
2 Q̇n

21 1
4 Cnl~Qn2Qn21!41 1

8 v0
2V~Qn!, ~1!

whereQn is the position of thenth particle measured from
the nth lattice site,Cnl is that parameter that controls th
strength of the nonlinear coupling, the dot indicates the ti
derivative,v0 is the limiting frequency for long-wavelengt
excitations, andV(Qn)[aQn

2/21Qn
4/4 is the soft on-site po-

tential. The parametera, which serves as a measure of th
importance of harmonicity in the substrate potential, play
crucial role for stabilizing a BC, as we show later on. It
worth noting in Eq.~1! the absence of linear coupling be
tween adjacent lattice sites. The reason is that the linear
pling forces would give rise to a phonon band which m
enter in direct resonance with the internal modes of a co
pacton, thus causing radiation of energy away from the co
pacton. The lattice equations of motion are

]2Qn

]t2 5Cnl@~Qn112Qn!31~Qn212Qn!3#

2 1
2 v0

2~aQn1Qn
3!. ~2!

For v0
2!Cnl , one approaches the continuum limit, in whic

Qn varies slowly from one site to another. Thus, using t
continuum limit approximation, Eq.~2! can be reduced to the
following partial differential equation@4#:

]2Q

]t2
23CnlS ]Q

]x D 2 ]2Q

]x2 1 1
2 v0

2~aQ1Q3!50, ~3!
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where the site indexn is replaced by the continuous positio
variablex.

To obtain the stationary breather solution, we look
localized waves of the formQ(x,t)5u(t)f(x), which we
substitute in Eq.~3! to obtain the following equations:

u tt1
1
2 a 1

2 v0
2u1K2u350, ~4a!

3Cnlfx
2fxx2

1
2 v0

2f31K2f50, ~4b!

whereK is an arbitrary constant. Solving Eqs.~4!, we obtain,
after a little algebra, the following continuum solution fo
breathers with compact support~or compactonlike breather!:

Q~x,t !5QM cos~bx!cn@~a1QM
2 !1/2v0t/&,k2#

for ux2Xu<a5p/~2b!, ~5!

Q~x,t !50 for ux2Xu.a, k[QM /@2~a1QM
2 !#1/2,

whereX locates the center of mass of the breather. The
rameterb[@v0

2/(6Cnl)#1/4 may serve as a measure of th
importance of discreteness effects in the system. The s
tion given by Eq.~5! indicates that a BC possesses a cos
spatial profile. Its amplitude is proportional toQM , which
multiplies acn Jacobi elliptic function of time. Whereas
standard breather soliton possesses exponential~infinite!
wings, the full width of the BC is strictly limited to

LC5p/b5p@6Cnl /v0
2#1/4, ~6!

thus implying that two BC’s will not interact unless the
come into contact in a way similar to the contact betwe
two hard spheres.

To check the validity of the above compacton soluti
~5!, we have performed the numerical solution of the eq
tions of motion~2!, which treat intrinsically the lattice dis
creteness~i.e., in which no continuum limit approximation i
made!. We choose the initial condition for the simulation
be Qn(t50)5QM cos(bn) for the particles which make up
the breather motion. This breather profile corresponds to
solution~5! evaluated at discrete lattice sites. The initial v
locities on the particles are chosen to be zero. Hereafter
takev0

258. Figure 1 shows the evolution of the lattice pr
file over one period of the breather motion. The larg
curves correspond to a situation where the full width of
compacton isLC557 times the lattice spacing@or equiva-
lently Cnl5

4
3 (57/p)4#, which therefore corresponds to a sit

ation close to the continuum system. As can be seen in
1, the analytical continuum solution~5! represented by the
largest solid curves agrees extremely well with the exact
lution that we obtained numerically~dotted curve!. After one
period of the dynamics (T50.18), the breather recovers th
exact shape it has initially att50.

On the other hand, the smallest curves in Fig. 1 show
results that we obtained forLC56, which corresponds to a
quite discrete system. Unexpectedly, we find there that
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continuum solution~5! agrees surprisingly well with the ex
act discrete solution~dotted curves!. Thus, the results in Fig
1 indicate that discreteness effects may not be detrimenta
the abrupt localization of nonlinear Klein-Gordon breathe
This feature is remarkably well confirmed by the results re
resented in Fig. 2, which we obtained forLC52. This situa-
tion in which only a single particle makes up the breath
motion corresponds to the ultimate degree of discretiza
of a breather mode. Consequently, it would be inappropr
defining a precise spatial profile for such a discrete breat
However, Fig. 2 shows, contrary to common intuition, th
the particle that makes up the breather motion is perfe
described by the continuum solution~5! evaluated atx54,
the center of mass of the breather.Nevertheless, from the
above results, we cannot conclude that here we hav
breather compacton, but rather a discrete breather w
abrupt localization.

Whereas theabrupt localizationor quasicompactification
of a nonlinear Klein-Gordon breather seems to be relativ
insensitive to the importance of the effects of lattice discre
ness, the presence of harmonicity in the substrate potenti
a major requirement for the existence of a BC. Indeed
have found out that the harmonicity parametera determines
the maximum amplitude of the breather motion,Qmax, below
which the breather is stable (0,QM<Qmax). The higher the

FIG. 1. Plots showing the temporal evolution of the spatial p
file of a compactonlike breather over one period of the dynam
T50.181. The largest curves correspond toLC557 @Cnl

5
4
3 (57/p)4#. The smallest curves correspond toLC56 @Cnl

51728/p4#. The solid curves show the analytical solution~5! in the
continuum approximation. The dotted curves represent the e
solution of the discrete equations of motion~2!.
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harmonicity parameter, the higher the maximum amplitu
Qmax. Figure 3~a! shows the stability diagram of a BC in th
range 1<a<1000. Figures 3~b! and 3~c!, which we obtained
for a5300, show the breather profile after ten periods of
oscillatory motion (t510T'3.14), for unstable and a stab
points of the stability diagram, respectively. Those tw
points are indicated by the two crosses in Fig. 3~a!. Figure
3~b! shows that in the parameter region of instability, t
spatial profile of the breather and its temporal periodicity
destroyed. Quite in contrast, in the parameter region of
bility the breather motion becomes perfectly periodic and
cosine shape of its spatial profile is preserved during
motion. Furthermore, we have performed simulations
represented here, which show that in general the domai
stability of a BC increases as the nonlinear coupling
creases, that is, as the system is more and more discret

In conclusion, we have demonstrated the existence of
calized breather modes with compact support in a stand
nonlinear Klein-Gordon system. Whereas the compactifi
tion of nonlinear Klein-Gordon kinks requires a strong no
linear coupling@4,5#, that is, a condition close to the con
tinuum limit, we have shown that contrary to commo
intuition the quasicompactification or abrupt localization o
nonlinear Klein-Gordon breather can be achieved in disc
systems. Furthermore, whereas the harmonic coupling m
be absent to avoid any radiation of energy away from a co

FIG. 2. Representation of the temporal evolution of the brea
over one period of the dynamics in the ultimate degree of discr
zation (T50.181). The simulation parameters areLC52 @Cnl

5
4
3 (57/p)4#. The solid curves show the analytical continuum s

lution ~5!. The crosses represent the exact solution of the disc
equations of motion~2!.
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pacton@5#, it comes out from this research that the presen
of harmonicity in the substrate potential is required to sta
lize a BC, a result which remains to be explained. This h
monicity gives rise to a phonon line, which corresponds
standing waves that cannot propagate owing to their z
group velocity. Finally, it emerges from this Brief Report
well as from previous related studies@4–6# that the concept
of compactification of solitary waves implies strict cond
tions that must be satisfied in order for physical systems
support localized modes with compact support. We ha
pointed out some of those conditions in the present wo
Nevertheless, in the actual stage of the research on struc
with compact support, the results that have been obtained
still far away from practical applications. Much work re
mains to be done, and in particular some fundamental pr
lems remain to be carefully examined, such as the interac
of such structures. This effort deserves to be carried ou
make the compacton concept a reality in some areas in w
compactons could ensure practical applications such a
signal processing and communications.
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FIG. 3. Plot showing the parameter region of stability of t
compacton forLC557, in the range 1<a<1000.~a! Stability dia-
gram. ~b! Breather profile forQM51.5. ~c! Breather profile for
QM50.1. The dotted curves show the breather profile att50. The
solid curves show the breather profile att510T'3.14.
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